Nanoscale and mechanical properties of the physiological cell-ECM microenvironment.
نویسندگان
چکیده
Studying biological processes in vitro requires faithful and successful reconstitution of the in vivo extracellular matrix (ECM) microenvironment. However, the physiological basis behind in vitro studies is often forgotten or ignored. A number of diverse cell-ECM interactions have been characterized throughout the body and in disease, reflecting the heterogeneous nature of cell niches. Recently, a greater emphasis has been placed on characterizing both the chemical and physical characteristics of the ECM and subsequently mimicking these properties in the lab. Herein, we describe physiological measurement techniques and reported values for the three main physical aspects of the ECM: tissue stiffness, topography, and ligand presentation.
منابع مشابه
Abstract template
Cell biomechanics mediates critical cell functions including proliferation, differentiation, gene expression, contraction, and migration. Moreover, cells sense and actively respond to the mechanical features of their microenvironment. Therefore, a precise characterization of the mechanical properties of cells and extracellular matrix (ECM) is needed to further our understanding of the cell-micr...
متن کاملImaging and manipulating the structural machinery of living cells on the micro- and nanoscale
The structure, physiology, and fate of living cells are all highly sensitive to mechanical forces in the cellular microenvironment, including stresses and strains that originate from encounters with the extracellular matrix (ECM), blood and other flowing materials, and neighbouring cells. This relationship between context and physiology bears tremendous implications for the design of cellular m...
متن کاملFeeling Stress: The Mechanics of Cancer Progression and Aggression
The tumor microenvironment is a dynamic landscape in which the physical and mechanical properties evolve dramatically throughout cancer progression. These changes are driven by enhanced tumor cell contractility and expansion of the growing tumor mass, as well as through alterations to the material properties of the surrounding extracellular matrix (ECM). Consequently, tumor cells are exposed to...
متن کاملNanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells
Introduction: Mechanical stimulation of human mesenchymal stem cells has demonstrated changes in many cell behaviours such as adhesion, migration, growth and differentiation through mechanotransductive pathways. These include experiments on effect of nanotopography 1, shear stress, stiffness of extracellular matrix 2, strain, stress and acoustic wave energy 3 on cells. In this research we wer...
متن کاملEffect of Carbon Nanotube Geometries on Mechanical Properties of Nanocomposite Via Nanoscale Representative Volume Element
Predicting the effective elastic properties of carbon nanotube-reinforced nanocomposites is of great interest to many structural designers and engineers for improving material and configuration design in recent years. In this paper, a finite element model of a CNT composite has been developed using the Representative volume element (RVE) to evaluate the effective material properties of nanocomp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental cell research
دوره 343 1 شماره
صفحات -
تاریخ انتشار 2016